```
\(V=1495.6(2) \AA^{3}\)
\(Z=4\)
\(D_{x}=1.365 \mathrm{Mg} \mathrm{m}^{-3}\)
```


Data collection

Siemens Stoe AED-2 fourcircle diffractometer $\omega / 2 \theta$ scans
Absorption correction: empirical (North, Phillips \& Mathews, 1968) $T_{\min }=0.481, T_{\text {max }}=$ 0.622

2130 measured reflections 1913 independent reflections
$0.80 \times 0.55 \times 0.45 \mathrm{~mm}$
Colourless
Crystal source: grown from ethyl acetate/hexane solution

1766 observed reflections

$$
\left[\left|F_{o}\right|>4 \sigma\left(F_{o}\right)\right]
$$

$\theta_{\text {max }}=22.5^{\circ}$
$h=-11 \rightarrow 13$
$k=0 \rightarrow 8$
$l=0 \rightarrow 16$
4 standard reflections frequency: 120 min intensity variation: 0.36%

Refinement

Refinement on F
$w=1 /\left[\sigma^{2}(F)+0.000060 F^{2}\right]$
$R=0.0350$
$w R=0.0498$
$S=1.303$
1766 reflections
181 parameters
H-atom parameters not refined

$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}\left(2^{\prime}\right)$	$-74.78(24)$
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{O}(5)$	$-111.48(21)$
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$3.06(24)$
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}\left(2^{\prime}\right)$	$124.96(20)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{S}\left(3^{\prime}\right)$	$162.71(15)$
$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{S}\left(3^{\prime}\right)$	$39.81(22)$
$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)$	$164.77(15)$

The structure was solved by direct methods using SHELXS86 (Sheldrick, 1990). Refinement was carried out with SHELX76 (Sheldrick, 1976). Molecular geometry calculations were performed using CALC (Gould \& Taylor, 1985). The atomic numbering scheme is shown in Fig. 1 which was produced by $X P$ (Sheldrick, 1989).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: HA1092). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Dawson, I. M., Lawrence, J. A., Wilson, N. H., Olverman, H. J. \& Kelly, J. S. (1991). Br. J. Pharmacol. 102, 244P.
Glennon, R. A., Naiman, N. A., Lyon, R. A. \& Titeler, M. (1988). J. Med. Chem. 31, 1968-1971.
Glennon, R. A., Naiman, N. A., Poerson, M. E., Titeler, M., Lyon, R. A. \& Weisberg, E. (1988). Eur. J. Pharm. 154, 339-341.

Gould, R. O. \& Taylor, P. (1985). CALC. An Interactive Program for Molecular Geometry. Univ. of Edinburgh, Scotland.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1989). SHELXTL/PC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Acta Cryst. (1994). C50, 2004-2007

2,5-Bis(methylthio)-7,7',8,8'-tetracyanoquinodimethane

Jin Mizuguchi and John S. Zambounis
Ciba-Geigy AG, Forschungszentrum, CH-1723 Marly, Switzerland

Grety Rihs

Ciba-Geigy AG, Forschungsdienste Physik, CH-4002 Basel, Switzerland
(Received 18 November 1993; accepted 7 March 1994)

Abstract

The title compound $2,2^{\prime}$-[2,5-bis(methylthio)-2,5-cyclohexadiene-1,4-diylidene]bis(propanedinitrile),
© 1994 International Union of Crystallography
$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}$, a thiomethyl derivative of tetracyanoquinodimethane, belongs to point group C_{i} and is nearly planar except for two H atoms of each methyl group. Within the molecular plane, however, there is considerable distortion in the vicinity of the cyano groups due to steric repulsion between the $-\mathrm{SCH}_{3}$ and $-\mathrm{C} \equiv \mathrm{N}$ groups. The molecules are stacked in a herringbone fashion with an interplanar distance of 3.40 (1) \AA along the b axis. In the direction of the a axis, the molecules are arranged in parallel and there are relatively close intermolecular $\mathrm{S} \cdots \mathrm{N}$ contacts of 3.200 (3) \AA between the S atom of the $-\mathrm{SCH}_{3}$ group of one molecule and the N atom of the $-\mathrm{C} \equiv \mathrm{N}$ group of the neighbouring molecule.

Comment

2,5-Bis(methylthio)-7, $7^{\prime}, 8,8^{\prime}$-tetracyanoquinodimethane [BMT-TCNQ (I); Fig. 1] is a newly synthesized thiomethyl derivative of TCNQ. TCNQ is known to be a strong π-electron acceptor. A number of charge-transfer complexes have been synthesized by combining TCNQ with a variety of electron donors (i.e. forming a two-component system), leading to semiconductors and even to metals (Coleman, Cohen, Sandman, Yamagishi, Garito \& Heeger, 1973; Conwell, 1988). Our goal is, on the contrary, to achieve high electrical conductivity by an organic single-component system. An attempt was made to introduce two $-\mathrm{SCH}_{3}$ groups at the 2 and 5 positions of unsubstituted TCNQ in order to bridge closely two TCNQ molecules through intermolecular $\mathrm{S} \cdots \mathrm{N}$ contacts and to enhance electron delocalization in the solid state. In fact, we have attained extremely high electrical conductivity of $\sigma=2 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$ at room temperature with evaporated BMT-TCNQ (Zambounis, Mizuguchi, Rihs, Chauvet \& Zuppiroli, 1994). The present structure determination has been undertaken in order to gain more insight into the correlation between the crystal structure and electrical conductivity.

(I)

BMT-TCNQ was prepared by a method analogous to the DuPont procedure in four steps starting from 1,4-bis(methylthio)benzene (Wheland \& Martin, 1975). The dark brown powder was purified twice by vacuum sublimation using apparatus described previously (Mizuguchi, 1981). The single crystals were then grown from a tetrahydrofuran
solution by slow solvent evaporation over several days.

The molecule is nearly planar with the exception of two H atoms (H 12 and H 13) of each methyl group. The largest deviation from the least-squares plane calculated through all non-H atoms was for H11, with a deviation of 0.120 (3) \AA. It should be noted that the $-\mathrm{SCH}_{3}$ and $-\mathrm{C} \equiv \mathrm{N}$ groups repel each other, causing considerable deformation in the vicinity of the cyano groups, as described below. The $\mathrm{C} 4{ }^{\prime}-\mathrm{C} 6-\mathrm{C} 7$ and $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ angles are not 120°, but 125.4 (2) and $117.0(1)^{\circ}$, respectively. Likewise, the $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 9$ angles are 128.2 (1) and 119.6 (2) ${ }^{\circ}$, respectively. Furthermore, the atoms C7, C8 and N2 are not exactly aligned

Fig. 1. ORTEP (Johnson, 1976) plot of BMT-TCNQ showing the numbering of the non-H atoms. Displacement ellipsiods are scaled to the 40% probability level.

Fig. 2. Stereoview of the crystal structure of BMT-TCNQ. Intermolecular $\mathrm{S} \cdots \mathrm{N}$ contacts are represented by dashed lines.
[C7-C8-N2 172.3 (3) ${ }^{\circ}$], whereas the $\mathrm{C} 7-\mathrm{C} 9-\mathrm{N} 3$ moiety is almost linear [179.5 (3) ${ }^{\circ}$]. Despite this steric hindrance, the intramolecular distances between Sl^{\prime} and C 8 , and between Sl^{\prime} and N 2 , are relatively short [2.870 (3) and 3.287 (3) \AA, respectively].
Fig. 2 shows a stereodiagram of the crystal structure of BMT-TCNQ. The molecules are stacked in a herringbone fashion along the b axis. In the direction of the a axis, the molecules are arranged in parallel and there are relatively close intermolecular $\mathrm{S} \cdots \mathrm{N}$ contacts of 3.200 (3) \AA between the S atom of the $-\mathrm{SCH}_{3}$ group of one molecule and the N atom of the $-\mathrm{C} \equiv \mathrm{N}$ group of the neighbouring molecule. These $\mathrm{S} \cdots \mathrm{N}$ contacts are shorter than the sum of the van der Waals radii ($3.35 \AA$), indicating considerable overlap of π electrons between the molecules. Along the c axis, the molecules have a zigzag arrangement.

The molecular absorption of BMT-TCNQ in dioxane appears at 474 nm and is considerably redshifted relative to that of unsubstituted TCNQ (404 nm). This is brought about by enhanced electron delocalization due to the S atom of the $-\mathrm{SCH}_{3}$ group as well as close intramolecular $\mathrm{Sl} \cdots \mathrm{C} 8$ and $\mathrm{S} 1 \cdots \mathrm{~N} 2$ contacts. In the solid state, the corresponding absorption band occurs at 590 nm , showing a large bathochromic shift in going from solution to solid. The present spectral shift of BMT-TCNQ has been interpreted as resulting from close intermolecular $\mathrm{S} \cdots \mathrm{N}$ contacts. The conduction mechanism is now under investigation on the basis of the present structure analysis (Zambounis, Mizuguchi, Rihs, Chauvet \& Zuppiroli, 1994).

Experimental

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}$
$M_{r}=296.364$
Monoclinic
$P 2_{1} / c$
$a=9.208$ (1) \AA
$b=5.391$ (1) \AA
$c=14.343$ (2) \AA
$\beta=106.80(1)^{\circ}$
$V=681.6$ (4) \AA^{3}
$Z=2$
$D_{x}=1.444 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.415 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in
$\mathrm{CHCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Data collection
Philips PW1100 diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
none

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=11-18^{\circ}$
$\mu=0.368 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate
$0.76 \times 0.26 \times 0.08 \mathrm{~mm}$ Black

2261 measured reflections 1831 independent reflections 1008 observed reflections
$[I>3 \sigma(I)]$

Refinement

Refinement on F
$R=0.030$
$w R=0.033$
$S=1.12$
1008 reflections
107 parameters
All H-atom parameters refined
$w=1 / \sigma^{2}(F)$

3 standard reflections frequency: 120 min intensity variation: 2\%

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i}, \mathrm{a}_{j}$.				
	\boldsymbol{x}	y	z	$U_{\text {eq }}$
S1	0.65343 (6)	0.1555 (1)	0.44851 (5)	0.0491 (4)
N2	1.32222 (2)	-0.6020 (5)	0.3917 (2)	0.0669 (5)
N3	0.8534 (3)	-0.6064 (5)	0.2691 (2)	0.0707 (5)
C4	0.8421 (2)	0.0648 (4)	0.4763 (2)	0.0356 (4)
C5	0.8887 (2)	-0.1266(5)	0.4311 (2)	0.0383 (4)
C6	1.0445 (2)	-0.2007 (4)	0.4497 (2)	0.0341 (4)
C7	1.0737 (2)	-0.3975 (4)	0.3959 (2)	0.0370 (4)
C8	1.2174 (3)	-0.5024 (5)	0.3982 (2)	0.0445 (4)
C9	0.9514 (3)	-0.5139 (5)	0.3251 (2)	0.0451 (4)
C10	0.5593 (3)	-0.0544 (6)	0.3538 (2)	0.0584 (4)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

S1-C4	1.737 (2)	C4-C6 ${ }^{\text {i }}$	1.453 (3)
S1-C10	1.788 (3)	C5-C6	1.438 (3)
$\mathrm{N} 2-\mathrm{C} 8$	1.131 (3)	C6-C7	1.384 (3)
N3-C9	1.135 (3)	C7-C8	1.430 (3)
C4-C5	1.353 (3)	C7-C9	1.426 (3)
C4-S1-C10	103.3 (1)	C5-C6-C7	117.0 (1)
S1-C4-C5	122.7 (1)	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	128.2 (1)
S1-C4-C6 ${ }^{\text {i }}$	119.1 (2)	C6-C7-C9	119.6 (2)
C5-C4-C6 ${ }^{1}$	118.3 (2)	C8-C7-C9	112.1 (2)
C4-C5-C6	124.1 (2)	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	172.3 (3)
C4i-C6-C5	117.6 (2)	N3-C9-C7	179.5 (3)
C4i-C6-C7	125.4 (2)		

Program used to solve structure: MULTAN11/82 (Main et al. 1982). Refinement was carried out by full-matrix least-squares methods. Molecular graphics: ORTEPII (Johnson, 1976).

The authors would like to express their sincere thanks to Messrs G. Giller and H. R. Walter for experimental assistance.

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and complete geometry, including H -atom geometry, have been deposited with the IUCr (Reference: SH1091). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Coleman, L. B., Cohen, M. J., Sandman, D. J., Yamagishi, F. G., Garito, A. F. \& Heeger, A. J. (1973). Solid State Commun. 12, 1125-1132.

Conwell, E. (1988). In Semiconductors and Semimetals, Vol. 27. New York: Academic Press.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Mizuguchi, J. (1981). Krist. Tech. 16, 695-700.
Wheland, R. C. \& Martin, E. I. (1975). J. Org. Chem. 40, 3101-3109.
Zambounis, J. S., Mizuguchi, J., Rihs, G., Chauvet, O. \& Zuppiroli, L. (1994). J. Appl. Phys. 76(3). In the press.

Acta Cryst. (1994). C50, 2007-2009

4-tert-Butyl-2,6-bis|(4-methyl-1piperazinyl)methyl]phenol

S. Shanmuga Sundara Raj, D. Velmurugan* and
E. Subramanian
Department of Crystallography and Biophysics, \dagger
University of Madras, Guindy Campus,
Madras 600 025, India

M. Kandaswamy

Department of Inorganic Chemistry, University of Madras, Guindy Campus, Madras 600 025, India
(Received 20 May 1993; accepted 10 January 1994)

Abstract

In the title compound, $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}$, both the piperazine rings are in perfect chair conformations and the substituents attached to the N atoms of the piperazine rings are in equatorial positions. The tertiary butyl group is oriented in such a way that the plane of the phenyl group nearly bisects the angle between two of the methyl C atoms of the butyl group, while the third methyl C atom lies in the plane of the phenyl ring.

Comment

The X-ray structure analysis of the title compound, (I), a binucleating ligand, has been undertaken to study the conformational features of the piperazine rings. The compound was synthesized by a modification of a procedure reported in the literature (Hodgkin, 1984). The molecular geometry is in agreement with that reported for similar molecules

[^0](Allen et al., 1987; Domenicano, Vaciago \& Coulson, 1975; Schwarzenbach, 1968).

(I)

Each piperazine ring adopts a perfect chair conformation (Bassi \& Scordamagila, 1977; Sbit, Dupont, Diderberg, Liegeois \& Delarge, 1992) similar to that found in morpholine (Snanmuga Sundara Raj, Ponnuswamy, Shanmugam \& Kandaswamy, 1993) and piperidine (Shanmuga Sundara Raj, Velmurugan, Ponnuswamy, Shanmugam \& Kandaswamy, 1994). The substituents at the N atoms of the piperazine rings are in equatorial positions (Allinger, Carpenter \& Karkowski, 1965). The molecular packing is based on van der Waals interactions.

Fig. 1. Perspective view of the molecule with atomic numbering scheme.

Experimental

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}$	Cu $K \alpha$ radiation
$M_{r}=374.6$	$\lambda=1.5418 \AA$
Triclinic	Cell parameters from 20
$P \overline{1}$	reflections
$a=9.720(1) \AA$	$\theta=15-25^{\circ}$
$b=9.945(1) \AA$	$\mu=0.45 \mathrm{~mm}^{-1}$
$c=12.172(3) \AA$	$T=298 \mathrm{~K}$
$\alpha=84.53(1)^{\circ}$	Transparent needle
$\beta=84.97(2)^{\circ}$	$0.3 \times 0.25 \times 0.2 \mathrm{~mm}$
$\gamma=83.49(1)^{\circ}$	White
$V=1160.2(3) \AA^{\circ}$	
$Z=2$	
$D_{x}=1.07 \mathrm{Mg} \mathrm{m}^{-3}$	

[^0]: \dagger DCB Contribution No. 836.

